Long-term expression of two interacting motor pattern-generating networks in the stomatogastric system of freely behaving lobster.
نویسندگان
چکیده
Rhythmic movements of the gastric mill and pyloric regions of the crustacean foregut are controlled by two stomatogastric neuronal networks that have been intensively studied in vitro. By using electromyographic recordings from the European lobster, Homarus gammarus, we have monitored simultaneously the motor activity of pyloric and gastric mill muscles for 300% of their mean duration. However, the duration of activity in the lateral pyloric constrictor muscle, innervated by the unique lateral pyloric (LP) motor neuron, remains unaffected by this perturbation. During this period after gastric perturbation, LP neuron and PY neurons thus express opposite burst-to-period relationships in that LP neuron burst duration is independent of the ongoing cycle period, whereas PY neuron burst duration changes with period length. In vitro the same type of gastro-pyloric interaction is observed, indicating that it is not dependent on sensory inputs. Moreover, this interaction is intrinsic to the stomatogastric ganglion itself because the relationship between the two networks persists after suppression of descending inputs to the ganglion. Intracellular recordings reveal that this gastro-pyloric interaction originates from the gastric MG and LG neurons of the gastric network, which inhibit the pyloric pacemaker ensemble. As a consequence, the pyloric PY neurons, which are inhibited by the pyloric dilator (PD) neurons of the pyloric pacemaker group, extend their activity during the time that PD neuron is held silent. Moreover, there is evidence for a pyloro-gastric interaction, apparently rectifying, from the pyloric pacemakers back to the gastric MG/LG neuron group.
منابع مشابه
Neuromodulatory inputs maintain expression of a lobster motor pattern-generating network in a modulation-dependent state: evidence from long-term decentralization in vitro.
Neuromodulatory inputs play a critical role in governing the expression of rhythmic motor output by the pyloric network in the crustacean stomatogastric ganglion (STG). When these inputs are removed by cutting the primarily afferent stomatogastric nerve (stn) to the STG, pyloric neurons rapidly lose their ability to burst spontaneously, and the network falls silent. By using extracellular motor...
متن کاملIn vivo modulation of interacting central pattern generators in lobster stomatogastric ganglion: influence of feeding and partial pressure of oxygen.
The stomatogastric ganglion (STG) of the European lobster Homarus gammarus contains two rhythm-generating networks (the gastric and pyloric circuits) that in resting, unfed animals produce two distinct, yet strongly interacting, motor patterns. By using simultaneous EMG recordings from the gastric and pyloric muscles in vivo, we found that after feeding, the gastropyloric interaction disappears...
متن کاملRemoval of GABA within adult modulatory systems alters electrical coupling and allows expression of an embryonic-like network.
The maturation and operation of neural networks are known to depend on modulatory neurons. However, whether similar mechanisms may control both adult and developmental plasticity remains poorly investigated. To examine this issue, we have used the lobster stomatogastric nervous system (STNS) to investigate the ontogeny and role of GABAergic modulatory neurons projecting to small pattern generat...
متن کاملNeurodynamic control of the heart of freely moving spiny lobster (Panulirus japonicus)
The heart of the crustaceans has its own pacemaker neurons inside the heart, which are composed of 9 neurons. The neurons receive innervations of only three kinds of axons originated from the central nervous system; one pair of inhibitory and two pairs of acceleratory axons. Thus, in terms of the neural cardiac control from higher center, this system may have much more simplistic operation comp...
متن کاملNeurodynamic control of the heart of freely moving spiny lobster (Panulirus japonicus)
The heart of the crustaceans has its own pacemaker neurons inside the heart, which are composed of 9 neurons. The neurons receive innervations of only three kinds of axons originated from the central nervous system; one pair of inhibitory and two pairs of acceleratory axons. Thus, in terms of the neural cardiac control from higher center, this system may have much more simplistic operation comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 79 3 شماره
صفحات -
تاریخ انتشار 1998